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Abstract
We investigate theoretically the nonlinear quantum conductance of finite single-wall carbon
nanotubes (SWCNTs) due to the presence of a single impurity. To take the length of the tube
into account and retain the periodicity of the SWCNT along its axis, a particle-in-a-box model
is employed. The dependence of the differential conductance on the gate voltage as well as its
sensitive dependence on the position of the possible impurity in the tube is studied. Results
suggest a promising method for spectroscopy of electronic energy levels in a SWCNT.

1. Introduction

Nowadays, great developments in experimental methods have
produced a gleam of hope of using carbon nanotubes in
electrical devices [1, 2]. The ability of using carbon nanotubes
in such devices will open a door to a wide range of applications
for these structures. A single-wall carbon nanotube (SWCNT)
can be considered as a graphene sheet folded around a specific
axis. Depending on the properties of this axis and the radius of
the tube, a SWCNT shows its own electrical properties. Almost
one third of these structures are conductors [3, 4].

Ideal metallic SWCNTs in the ballistic regime are
categorized as quantum conductors [5]. In a quantum
conductor, on the basis of Landauer theory [6], conductance
is quantized. The conductance of an ideal SWCNT is
G0 = 4e2/h [7] (and references therein). Meanwhile, the
presence of any kind of disorder or imperfection in these
structures will affect the conductance [8, 9]. These disorders
are always present: phonons [10]; defects at the points of
connection between nanotubes and contact electrodes [11, 12];
common structural defects in nanotubes such as Stone–Wales
defects [13, 14]; and even desirable or undesirable non-carbon
atoms on the surface of the tube [15–17].

In the last case, unlike for the bulk conductors, the
presence of a single impurity will dramatically change
the conductance. The more interesting point is that the

conductance is not only dependent on the number of such
single defects, but also on their positions. This is what
results in negative differential conductance or quantum
interference. These phenomena were the subject of some of
our studies [18, 19] as well as those of others [20–24].

Using well-known techniques [25], now researchers are
able to cut nanotubes into segments of length of a few tens of
nanometers. This produces new electronic properties for finite-
length carbon nanotubes: confinement of the length results
in completely quantized energies for conduction electrons—
confirmed by experiment [26, 27]—and leads to the probability
of finding electrons being different from one point to another
along the nanotube, which is essential in understanding the
size effects. Obviously, it is important to study such quantum
size effects in view of the device application of nanotubes.
Different studies have already focused on electronic properties
of finite-length carbon nanotubes [28–30].

In this research we are going to deal with only one single
impurity (or defect) on the surface of a finite metallic SWCNT.
We tried to analytically obtain the change in the conductance
of a SWCNT, due to the presence of a single defect, by means
of a very simple model for including tube length, based on a
perturbative scheme. As will be expressed, for a limited length
carbon nanotube, the amount of scattering of the conduction
electrons’ wavefunctions from a defect (and as a result the
change in the conductance of the nanotube) depends on the
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Figure 1. The model of a SWCNT in the form of a long cylindrical
surface of the diameter d , which smoothly connects two massive
metallic reservoirs. The impurity or defect on the surface of the
cylinder is shown schematically.

position of the possible defect. We have tried to investigate this
dependence as well as the nonlinear part of the conductance.
We see that our results introduce a quantitative method for
spectroscopy of the energy levels as well as imaging the
probability distribution of conduction electrons. This is what
can be investigated by nanoprobes as a cause of such point-like
defects.

Thus this paper is organized as follows. In section 2, we
introduce a method for calculating the change in conductance
in a SWCNT due to the presence of one single defect; in
section 3, our model for obtaining the wavefunctions as well
as energy levels for conduction electrons in a finite-length
SWCNT is introduced. In section 4, we discuss observed
dependences in results obtained. And finally we end with a
conclusion.

2. Method of calculation of the differential
conductance

Let us consider a metallic SWCNT as a long but finite cylinder,
which connects two bulk metallic electrodes. The electrodes lie
at different voltages V , assuming eV � EF. We also assume
that a single impurity (or defect) is located on the surface of
the cylinder (as shown in figure 1).

We will completely neglect possible backscattering of
electrons on metal contacts. The Hamiltonian of the electrons,
H , contains the following terms:

H = H0 + H1 + Hint (1)

where
H0 =

∑

k

εkc†
k ck (2)

is the Hamiltonian of Bloch electrons ‘feeling’ only the perfect
lattice of SWCNT,

H1 = eV

2

∑

k

sgn(vz)c
†
k ck (3)

describes the interaction of the electrons with the electric
field. Here operator ck

† (ck) creates (annihilates) a conduction
electron with wavefunction �k and energy εk . As will be
seen later, k is the full set of electron quantum numbers for

translational and rotational degrees of freedom (ignoring spin).
vz is the electron velocity along the tube axis. Finally Hint is the
Hamiltonian of interaction between electrons and the impurity:

Hint =
∑

k,k′
Jk,k′ c†

k ck′ (4)

where in general

Jk,k′ =
∫

drJ (r)�k(r)�∗
k′ (r). (5)

The strength of this interaction is assumed to be small. The
conductance of the system is described by the Landauer
formula, which is applicable if the wavefunction can spread
over the whole sample. In order to investigate the influence
of the defect, a perturbative scheme along with the second-
quantized representation of the Hamiltonian can be used. The
change in the electrical current �I is related to the rate of
energy dissipation by the relation

�I V = dE

dt
= d 〈H1〉

dt
. (6)

The differential of 〈H1〉 with respect to time t is obtained from
the Heisenberg equation. The change �I of the current due to
interactions of electrons with impurities would then be

�I V = 1

ih̄
〈[H1(t), Hint(t)]〉 , (7)

where
〈O〉 = Tr [ρ (t) O] . (8)

All operators are in the interaction representation.
The statistical operator ρ(t) satisfies the equation

ih̄
∂ρ

∂ t
= [Hint(t), ρ(t)] (9)

which can be solved using perturbation theory in Hint (but for
arbitrary H1). Thus, the change in the electric current due to
the presence of impurity can be written as [31, 32]

�I = I1 + · · ·
= − 1

h̄2V

∫ t

−∞
dt ′ Tr

(
ρ0

[
[H1, Hint(t)] , Hint(t

′)
]) + · · ·

(10)

where ρ0 is the statistical operator for the electrons. Then the
first-order correction to the current would be

I1 = −eπ

h̄

∑

n,m

(sgn vzm − sgn vzn )( fm − fn)

× δ (εn − εm) Jn,m . (11)

Here fn = fFD[εn + (eV /2)sgn(vz)] is a function of voltage.
Recalling the definition of J, from the above equation it is
clear that the current I1 depends on the value of the electronic
wavefunctions at the point where the defect is situated. This
is totally a quantum effect. We assume that the interaction is
point-like,

J (r) = gδ(r), (12)
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Figure 2. Schematically showing the geometry of the
particle-in-a-box model for finite carbon nanotubes as well as
corresponding perturbative potential. The translational period for
SWCNTs along the tube axis is T .

and we work at zero temperature. At zero temperature, fn =
	[EF−εn −(eV /2)sgn(vz)] is the Heaviside step function. By
differentiating equation (11) over the gate voltage, we would
obtain the conductance due to the presence of the impurity G1

as [33, 18]

G1 = G0

(gπ

2

)2 ∑

m,n

(sgn vzm sgn vzn − 1)

× δ

(
EF − εn − eV

2
sgn vzn

)

× δ (εn − εm) [�2
m(r)�2

n (r)]. (13)

At this point, all the results within the perturbation
theory are exact. To illustrate the result, one should use
the wavefunctions and energy spectrum for conducting Bloch
electrons in SWCNTs.

3. Wavefunctions and energies: particle-in-a-box
model

The tight-binding method for graphene sheet, along with the
zone-folding approximation, is the most common method
for calculating the wavefunctions and energies for infinitely
long SWCNTs [34–36]. Several methods have been already
presented for obtaining the wavefunctions as well as energies
for finite SWCNTs [37–41].

In order to calculate the energy spectrum and wavefunc-
tions of Bloch electrons we consider a simple model for nan-
otubes here. We assume that we are dealing with long but
finite-length particle-in-a-box form. To impose the periodic
structure of SWCNTs along the tube axis, which is set to be in
the z-direction, we assume that the electron moving along the
tube axis has a Hamiltonian of the form

H0 = P2

2m
+ U, U = c

2l−1∑

q=1

δ(z − qT/2)

0 < z < l (14)

where c is strength of the δ-potential with the dimension
of energy × length, z is along the tube axis and T is the
translational period of the tube along its axis. 2l shows the
length of the tube in units of translational period along the tube

T=a0

Three consecutive atomic layers

Figure 3. Unfolded armchair SWCNT. The vertical axis is along the
circumference and the horizontal axis is along the tube axis (z-axis).
The translational period of the tube is shown in the figure. Three
consecutive atomic layers are also depicted. As is clear, there are
equal numbers of carbon atoms in every atomic layer.

axis T , where for armchair tubes T = a0 = 2.461 Å and for
zigzag tubes T = √

3a0 Å. a0 is the length of the basis vectors
of the graphene honeycomb lattice and the carbon–carbon bond
length is assumed to be acc = 1.421 Å [42]. The tube length
is then 2lT . More importantly this term keeps the periodicity
needed for taking the structure of the nanotube into account.
Figure 2 shows the potential term.

Now let us consider the armchair tubes. Here we have
modeled the effect of each of the atomic layers, which are
placed at every qT/2 for q = 1, 2, . . . , 2l − 1 along the tube
axis, with an attractive δ-potential (c < 0) of the same strength.
Assuming the same strength for all δ-potentials is reasonable
since in armchair tubes there are equal number of carbon atoms
in every atomic layer. Figure 3 shows an unfolded armchair
SWCNT. The vertical axis is along the circumference of the
tube while the horizontal axis is along the tube axis (z-axis).

As is clear, the above Hamiltonian is totally one
dimensional. This approximation will be valid only for
those tubes with large ratio of length to diameter. This
is essentially the case for practical use in many application
in nanoelectronics. The more accurate model has already
been presented by considering the tube as a three-dimensional
molecule and approximating the 2pz orbital of each carbon
atom with such attractive δ-potential [43]. The strength of the
δ-potential here is indeed different from what the authors have
presented in [43]. They have regularized the strength by fitting
with ab initio and tight-binding results.

The Hamiltonian (14) has an exact solution for its
wavefunctions and energies which can be found by elementary
quantum mechanics methods. Basically, such a solution for
wavefunctions has 2l parts for which every solution is valid
for a particular partition (say the i th partition: i T/2 � z <

(i + 1)T/2). Each corresponding energy level would then
be found from a transcendental equation either by a graphical
method or by numerical calculations. Since equation (13)
requires wavefunctions and energies for every quantum level,
to continue more analytically, we will follow a perturbation
scheme as an alternative method. Perturbation then provides
us with nicer relations for wavefunctions as well as energies.

3
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Besides the kinetic energy term in equation (14), what remains
can be considered as a perturbation potential for a particle-in-a-
box system. The wavefunctions for the system to the first-order
correction would be of the form

�r,s (z, φ) =
[

sin
(rπz

l

)

+
(

2

l

)
cl2 ×

∑

m 	=r

2l−1∑

q=1

(
1

r 2 − m2

)
sin

(mπq

2l

)
sin

(rπq

2l

)

× sin
(mπz

l

)]
×

(√
2

πdl

)
exp (isφ) . (15)

The corresponding energies for the translational degree of
freedom to the first-order correction take the form

εr
trans =

(
r 2

l2

)
+ c

(
2

l

) 2l−1∑

q=1

sin2
(rπq

2l

)
(16)

in terms of E0 = π2h̄2/2mT 2 and r = 1, 2, 3, . . ..
It should also be emphasized that the perturbative potential

employed here has nothing to do with rotational degree of
freedom for electrons. This is why the first correction to the
energy is independent of quantum number s.

In equations (15) and (16), lengths and energies are written
respectively in units of T and E0. The first two wavefunctions
corresponding to two lowest energies as a function of z in
the direction of the tube axis are shown in figure 4 for an
armchair SWCNT of length 25T (=a0). Obviously, these
wavefunctions consist of two factors: a periodic function
retaining the periodicity of the nanotube structure; and a
particle-in-a-box wavefunction. What is experimentally seen
by STM imaging is just a superposition of these electronic
wavefunctions near the Fermi level. This is consistent with the
STM imaging done experimentally by Venema et al [44]. The
point that should be kept in mind is that as the length of the tube
is increased, small oscillations lose their amplitude. Figure 4
is just plotted to show the behavior of corrected wavefunctions
while a tube with length 25a0 cannot be accurately described
with this model (since, as stated earlier, this model is more
suitable for tubes with large ratio of length to diameter). In
figure 4, the strength of the δ-potentials was fixed in such a
way that the ground state (GS) energies of our model and the
tight binding are equal.

For armchair tubes we have T = a0 and therefore E0 =
π2h̄2/2ma0

2. The total number of carbon atoms in the unit cell
of a nanotube is [42]

nc = 4
(
n1

2 + n1n2 + n2
2
)

n R
(17)

where n1 and n2 are indices of the tube which for armchair
tubes are the same; n is the greatest common divisor of n1

and n2. Each carbon atom contributes only one electron (a
2pz orbital electron) to the total conductance. These are the
electrons that will occupy the energy levels of a particle-in-
a-box model. The other three electrons ((sp2)1, (sp2)2 and
(sp2)3) are well bound to the carbon atom’s nucleus. For
armchair nanotubes R = 3, so the total number of 2pz orbital
electrons in an armchair tube will be N = 4nl.

0 5 10 15 20 25

0.0

2.0x10
-3

4.0x10
-3

6.0x10
-3

8.0x10
-3

1.0x10
-2

1.2x10
-2

2

Z (in units of a0)

Figure 4. Squared electronic wavefunctions corresponding to two
lowest energies for an armchair (5, 5) SWCNT of length 25a0. The
perturbation constant, c, is set in such a way that the ground state
(GS) energy of our simple model and the GS energy in
nearest-neighbor TB are equal. The wavefunctions consist of two
factors: a particle-in-a-box wavefunction; and a periodic function
(small oscillations in the figure) which retains the periodicity of the
tube along its axis.

The diameter of a nanotube is given by

d = a0

π

√
n1

2 + n1n2 + n2
2 (18)

so the discrete energy levels for rotational degree of freedom
for an armchair SWCNT in our simple model are given by

εs
rot = 4

3

( s

n

)2
(19)

in terms of E0 and s = 0, 1, 2, . . .. In fact, the quantity εr,s =
εr

trans + εs
rot is just εk which was introduced in equation (2).

A discussion on the Fermi energy is needed here. The
energy levels of the system, as introduced above, are given by
εr,s = εr

trans + εs
rot. To find a value for the Fermi energy,

all we should do is to distribute N conduction electrons to a
pair of quantum numbers (r, s) (each quantum state denoted
by the pair (r, s) accepts two electrons, including spin) and
find the minimum of the possible values for εr,s . In general,
the Fermi energy would then be a function of the tube length
as well. Figure 5 shows the Fermi energy as a function of the
tube length. As the length of the tube increases, the Fermi
energy approaches a constant value. The constant value that
the Fermi energy eventually reaches, comes from distributing
all N conduction electrons to energy levels corresponding only
to translational degrees of freedom introduced in equation (16).
Including spin, the Fermi energy would be of the form EF ≈
(N/2l)2, in units of E0, where N is the total number of 2pz

orbital electrons in the tube. By inserting N into EF we get

EF ≈ (2n)2 (20)

which is obviously independent of tube length. n denotes
the tube index. The dependence of the Fermi energy on the
length is totally a result of confining the length of the tube.

4
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Figure 5. Fermi energy (in units of E0) versus length for armchair
SWCNTs with different diameters. For short tubes, the Fermi energy
sensitively depends on the length of the tube. The Fermi energy
rapidly rises and finally reaches a constant value, (2n)2, for each
case. Each curve corresponds to SWCNTs with different diameter.

This feature cannot be seen in infinite SWCNTs [44]. The
difference between the more exact value for the Fermi energy
and equation (20) becomes greater for a fixed-length tube as
the diameter increases. We also see that the value of the
Fermi energy for the tubes with lengths longer than 100a0

is nearly independent of length for all diameters shown in
the figure. To use the length-independent form for the Fermi
energy (equation (20)), we consider armchair SWCNTs with
lengths longer than 100a0 hereafter.

Since we are dealing with squared wavefunctions and
we have a single defect in the problem (see equation (13)),
assuming the plane wave form for the wavefunctions of
electrons in their rotational degree of freedom shows that we
can easily neglect the electron’s wavefunctions for its rotational
degree of freedom in this simple model. In fact, this is one of
the points that can be revised by using a more realistic model.

Now we are well equipped to provide equation (13) with
wavefunctions as well as discrete energies of electrons.

4. Results and discussion

In the present section, we show the results from figures 6–8.
The vertical axis in the figures is scaled in such a way that we
have (

gme

π h̄2 )
2×10−4 = 1. In figure 6 we have plotted the change

in conductance due to the presence of a single defect versus
gate voltage (V ). The gate voltage has been set to 0.01EF

to 0.1EF in each case. Figure 6(a) shows G1 for a (10, 10)
SWCNT of length 150 a0. As was shown before in figure 5, in
this case we can use the length-independent form for the Fermi
energy with a good approximation. To see the effect of length-
dependent Fermi energy, we have plotted the same graph in
figure 6(b) but this time for a (10, 10) SWCNT of length 50a0.
In both figures 6(a) and (b) G1 sensitively depends on gate
voltage and some oscillatory patterns are also observed. The
patterns in figures 6(a) and (b) are almost the same for different
graphs which correspond to different positions of the defect on
the tube.

If we go back to equation (13), we see that gate voltage
(V ) controls the contribution of conduction electrons to the
total conductance in this way: let us say an electron which
contributes to the total differential conductance has an arbitrary
energy Earb. Then Earb differs from EF just by the value of V .
If the difference between Earb and EF is more or less than V ,
then the electron with energy Earb cannot contribute to the total
differential conductance.

The index and the length of the nanotube is fixed in
figure 6(a). So, the energy spectrum is not changed for different
curves in figure 6(a). The observation of a peak in G1, for
example around 0.025EF, in all three curves in figure 6(a)
shows that the number of states with difference in energy
around 0.025EF from the Fermi energy is larger compared to
that of states with difference in energy say around 0.03EF from
EF. This can be considered as some kind of spectroscopy. This

0.00 0.02 0.04 0.06 0.08 0.10

0.0
0.3
0.6
0.9
1.2
1.5  Impurity at 10a0

Gate Voltage (eV/E0)

0.0
0.3
0.6
0.9
1.2
1.5
1.8

 Impurity at 25a0

0.0
0.3
0.6
0.9
1.2
1.5
1.8

-G
1/G

0

 Impurity at 50a0(a)

0.00 0.02 0.04 0.06 0.08 0.10

0
2
4
6
8

10
12
14
16

 Impurity at 10a0

Gate Voltage (eV/E0)

0
2
4
6
8

10
12
14
16

(b)  Impurity at 25a0

Figure 6. First correction to the conductance versus gate voltage for a (10, 10) SWCNT of length (a) 150a0 and (b) 50a0. In the case of (a),
EF is independent of the tube length (see figure 5) but in (b) we have used the more exact Fermi energy. Each curve corresponds to different
positions of the defect on the tube. The gate voltage varies from 0.01 to 0.1EF in each case. (a) shows that the number of states with
difference in energy around 0.025EF from the Fermi energy are larger in comparison with say 0.03EF. This is also true in (b) for states with
energy difference around 0.1EF from the Fermi energy.
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Figure 7. First correction to the conductance versus position of the defect along the tube axis for (a) (5, 5) and (b) (10, 10) SWCNTs
respectively of length 100a0 and 120a0. The gate voltage is set to 0.01EF.

100 150 200 250 300 350 400 450 500 550

0.00
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0.20
(a)  (8,8) SWCNT

-G
1/G

0

Length (units of a0)
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0.3

0.4
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0.6 (b)  (8,8)
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Figure 8. First correction to the conductance versus length of the tube. Positions of the defects are similar for all curves in (a) and (b). The
defect is situated at 10a0. (a) shows a rapidly decreasing behavior of the correction to the conductance versus length of the tube for a (8, 8)
SWCNT. In (b), this behavior is studied when the tube diameter is changed. As the diameter grows larger, the first correction increases in
value. The gate voltage is set to 0.01EF in both (a) and (b).

feature is more obvious in figure 6(b). The energy spectrum
is similar for different curves in figure 6(b), yet different from
figure 6(a) since the length of the tube in figure 6(b) is different
from the tube length in figure 6(a).

The overall value for G1 in figure 6(a) is much less than
that for figure 6(b). This is the case because the interaction of
electrons in shorter tubes with the defect is greater. We can
say that the spatial distribution of electronic wavefunctions in
shorter tubes is confined to a shorter particle-in-a-box system.
For tubes with the same diameter, shortening the length also
results in greater amplitude of all electronic wavefunctions (see
equation (15)). In this way, for a fixed defect, the sum of
all squared electronic wavefunctions near the Fermi level at
the position of the defect is greater in comparison with the
longer tube case. In other words, for the case of shorter tubes,
the presence of the defect is more appreciable for conduction
electrons. So, G1 is then greater for shorter tubes.

Moreover, the pattern in figure 6(a) is more complicated
than the pattern in figure 6(b). This can be understood
by counting the number of available electronic energies and
corresponding wavefunctions which contribute to the total
amount of G1. Recall that for shorter nanotubes, the distances

between energy levels are larger, which results in a smaller
number of states around the Fermi energy. Consequently
the total sum in equation (4) consists of the superposition of
fewer wavefunctions leading to less complication for shorter
nanotubes comparing to larger ones.

In figures 7(a) and (b), G1 is plotted versus the position
of the defect respectively for (5, 5) and (10, 10) armchair
SWCNTs. The lengths of the tubes in figures 7(a) and (b) are
respectively 100a0 and 120a0. This shows that the differential
conductance sensitively depends on the defect position along
the tube and has an oscillatory pattern.

To discuss this, let us go back once again to equation (13).
It is clear that G1 depends on the values of squared electronic
wavefunctions, corresponding to all quantum numbers which
satisfy the two δ-functions in the equation, at the point at
which the defect is placed. So, as was stated before, G1

is a measure of all squared electronic wavefunctions that
contribute to the conduction of the tube. The value of G1 at
a point in figures 7(a) and (b) is just the sum of all squared
electronic wavefunctions near the Fermi level at that point. The
sensitive dependence of G1 on the position of the defect is then
reasonable.

6
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In addition, it is clear that the graph is symmetric with
respect to the middle point of the tube: 50a0 in figure 7(a),
and 60a0 in figure 7(b). Since the wavefunctions of electrons
in our model are symmetric with respect to the middle of the
tube (see figure 4), the G1 graph should also be symmetric
with respect to the same point. Another feature is that since
the wavefunctions of electrons vanish at the two ends of the
tube (due to the particle-in-a-box model), G1 also vanishes at
these points, as expected. It is also seen that the first correction
to the conductance for a (10, 10) SWCNT (figure 7(b)) is
considerably larger than that of a (5, 5) SWCNT (figure 7(a)).

In figure 7(b) we have plotted the G1 graph for a
(10, 10) SWCNT of length 120a0. This tube is almost
the same in length and diameter as the one that was the
subject of experimental investigations by Venema et al [44].
Here we should state that comparison between figure 7(b)
and results given by Venema et al is meaningful: changing
the position of the defect along the axis of the tube and
calculating the differential conductance using equation (13)
is qualitatively similar to imaging the squared electronic
wavefunctions through the nanotube. They used a tube of
length 300 nm and diameter 1.4 nm. Our very simple model
shows a wavelength that agrees with experimental results
with an acceptable difference. The experimentally reported
wavelength is ≈3a0 while our calculations suggest almost
the same value (see the inset of figure 7(b); since we have
a measure for squared electronic wavefunctions, we should
consider two consecutive peaks).

Figure 8 shows the behavior of the differential conduc-
tance versus the length of the tube while the defect is situated
at a fixed position. The descending behavior of the nonlinear
conductance can be described as follows: as the length of the
nanotube is increased, the number of carbon atoms (as well
as conduction electrons) is also increased. So, we eventually
reach the thermodynamic limit. In these conditions, the effect
of a single defect as a scattering center for electrons can easily
be neglected. It is clear that the effect of a single defect on the
conductance cannot be seen in infinite tubes.

A common feature in the figures 7 and 8(b) is that on
increasing the diameter of the tube, the first correction to
the conductance rises. For example, compare the overall
value for the first correction to the conduction in figures 7(a)
and (b); or see figure 8(b). This is because in tubes with larger
diameter (yet with the same length) there are more modes
available for conduction electrons to move along the tube. So,
interaction of electrons with the defect would then be greater
and this increases the absolute value of the correction to the
conductance.

5. Conclusion

In conclusion, the effect of a single defect on the differential
conductance of a finite-length armchair single-wall carbon
nanotube within the context of a perturbation scheme is studied
by using a simple model. Our results show that there is
an interplay between the position of the defect, the length
and the diameter of the tube which affect the value of the
differential conductance. For a nanotube with fixed length and

diameter and a defect positioned at a fixed point, the nonlinear
differential conductance shows a non-monotonic behavior as
a function of gate voltage, having some local maxima whose
distances are related to the electronic energy level spacing of
the nanotube. This shows a potential application of a new
spectroscopy method for electronic energy levels in metallic
SWCNTs.

Also our results show that while the position of the defect
changes smoothly over the surface of a finite-length nanotube,
differential conductance has an oscillatory behavior. The
period of such oscillations does not depend on the defect
position and only depends on the length and the diameter (and
consequently the electronic energy spectrum) of the nanotube.
Moreover this study, as is expected, shows that the differential
conductance decreases rapidly as the length of the SWCNTs is
increased.
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